VVECTOR

powering .
decision confidence

Financial Modelling

Understand the leverage possible with VBA

“
:“
’ . > o -
T v (’,‘.‘
W Iy . % Dot g AL BTt N AR SRR AT HIOA "
PrLCRS o AT R P 533 SO VOLERRORNCRICR RS 7 4 -3 O IR

’ Please do not print this document. Designed to be viewed at full screen. Created by Vector Financial Modelling. 2025 — E&QOE. - All Rights Reserved.

PAYING IT
FORWARD

We encourage you to share
with your colleagues.

Please keep the document
whole to preserve the
structure, intent and spirit.

While there is no single right way to approach financial modelling, we have refined
our method over 30 years to deliver confidence - championing clarity, user
experience, and integrity while prioritising certainty and minimising errors. VBA is an
essential tool for professional financial modellers; we'd like to share some insights to
give you inspiration to getting to grips with it or some pointers on best practice if
you are already using it.

VBA has a higher barrier to entry than using a spreadsheet but once you know the
basics you can solve 95%+ of typical transaction and reporting challenges — well
they no longer become challenges!

This advice comes from both a Theoretical Astrophysicist / Project Financier and a
seasoned software architect both dedicated to financial modelling for a combined
tenure of 35+ years modelling transactions; we'd like to think we have something
passing on!

We dedicate our time to a select number of client transactions, in-house training
and our own project investments — so there is only so much we solve; however, by
sharing this insight into how we work we aim to give you a boost - or a Red Bull F1
pit-stop experience if you're already racing.

Wherever you are on your journey, we're here to help you work smarter, not harder
- spending less time tinkering with spreadsheets, more time confidently closing
deals and powering ahead.

Enjoy our thoughts and approach, we hope it helps. If you like what we do check
out vectorHQ.co

Nk © Bex

https://www.vectorhq.co/

INTENTION

This Guide is intended to open the door to appreciating the power of
well-designed and user-friendly VBA specifically for transaction
financial models.

It is not a ‘how-to’ but a lite 'how-we' utilise VBA for transactions;
we've worked to a place where there is no situation that we have not
been able to solve relatively easily and would like to pass this on.

VBA is an incredibly powerful tool that is not often used properly,
leading to its unfair reputation for turning models into Black-Boxes.
Digesting this guide should enable you to avoid this Black-Box issue,
unlock the full potential of your model and take a step closer to
becoming the modelling guru in your team. In particular, the Debt-
Guru!

This brief guide will cover the essentials of how we use VBA for
automation and problem-solving, which are central to Debt/Equity
Sizing and Scenario Analysis — our primary focus on transactions.

If this guide resonates with you ask us about training, if you are
facing a transaction and need it go to smoothly ask us about how we
can support.

© O

MODEL

DEVELOPMENT TRAINING

INTRODUCTION

What does VBA do?

I'm not a coder ?!

Easy Execution

FOUNDATION

Pseudo Code

Anatomy of a routine

The VBA environment

Calling a subroutine

Low cognitive load

Basic logical structures

Variable types

LOOPS

Overview Common logic For Next Do Until Do While
DEBUGGING

Overview Add watch Stepping Safety measures

DESIGN FOR SPEED

Overview

Tracking performance

INSPIRATION

Regular applications

Informing the user

Build a scenario table

Debt dashboard

Portfolios

https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

oD
ON

We think of VBA as 'half of modelling’ as it
opens-up different ways of working and it
automates things you would never do manually;
and even if you did would be risking manual
error. Whilst learning is never ending the
essential tools can be learnt in a day in the right
environment.

WHAT DOES VBA DO?

In a nutshell - VBA allows you to interact with a spreadsheet in a programmatic way, enabling automation — it
might sound boring but is super powerful.

For us it's an essential tool for solving capital structures, creating scenarios and advanced output as well as
implementing structures which to do manually would be impossibly slow to create or manage.

It has been embedded within Excel for 30 years — and in that time it has not really changed. As the name
suggests it is a fairly, basic programming language which allows you to manipulate your spreadsheet. If you
are a model developer or user in the financial sector, it makes you quicker, avoids manual errors but also
provides new structural solutions to problems where the number of dimensions are an issue.

VBA is essential for:

= Debt and equity sizing and principal repayment management

= Advanced scenarios and sensitivities — inc. Mine Plan management
» Portfolio and cohort modelling

= Report generation

= Automating anything you need to do more than once!

raw Pagelayout Formulas Data Review View

= B E B @

OPEN VBA

From anywhere in your usual Excel
workspace press ALT + F11 to open
the VBA interface.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<

I'M NOT ACODER?!

So what?! If you can think logically and know what you want to achieve the “code” is the easy bit — you just need to know where to start. This
guide will show you the core parts of what you need to know and if you want to really cement your knowledge, then let's do some Training. If
you can describe what you want to achieve to somebody who knows VBA — you are 75% of the way-there. VBA will do exactly what you tell it
to so if you can do things in the right order with the correct syntax — then you have an awesome tool at your disposal.

We can teach you the approach and syntax needed to harness VBA, for even quite advanced financial modelling, in a single day — the secret
sauce is in learning what to make the Spreadsheet do vs the Code; and when do it. Some of our most sophisticated capital optimisation routines
use nothing more than the most basic coding structure. Once you can ‘tell the spreadsheet part of the model’ what to do you then you unlock
analysis you would never dream of doing manually and implement structural solutions that you would have otherwise avoided.

Great examples include:

= Debt sizing — this is without exception only an iterative exercise in changing variables to satisfy constraints.

» You have 10+ scenarios to run and on some of then you need to re-size debt — you never want to do this manually!

» You have a portfolio of say 120 identical, or could be identical, assets / projects / business units but there is no way you want to manage 120
worksheets when you want to make a change — but make a change to the first one and have it flow through, priceless.

= 2-dimensional table but each time the value is generated you need to re-size debt.

» You want to generate the full financial statements and Exec Summary of each scenario (not just a small handful of KPI) — you wouldn't do this
manually as the next time something changed you would have to do it all again.

» You want to find the breakeven prices in each period over a project to achieve a target LLCR — where a change affects other changes you've
made!

an OK routine given good instruction, but this is only a time saver
when you already know what you are doing! Use it for debugging
syntax not creating it.

g Al is very good at helping you with Syntax. Currently it will provide

ChatGPT

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<l

EASY EXECUTION

You can execute (run) macros either using ALT + F8 or more usefully by attaching them to an icon or button within the spreadsheet. When the
user clicks a button, the macro runs — and we make sure they know what is happening — see further in this document. It is helpful to locate all
relevant macros ‘buttons’ in one area or in the most relevant area — and you can be quite creative to lower the cognitive load of using the model.

Laying out macro buttons logically and clearly takes some consideration.

Enter the required debt limit and
then run macro. It will ensure that
the target debt is fully utilised
(including financing costs) and set
Initial Equity such that the is no
need for Standby Equity.

Master Solve

LEAN + SEQUENTIAL

In this debt dashboard we've made the macros clear but enabled the user to solve
everything with a ‘Master’ routine or stage by stage with the button’s numbered 1.2.3.
This approach is helpful during development but quickly trends to just running the
Master “solve everything all at once’ option.

ADVANCED NOTE

Very occasionally it is useful for a
macro to run without explicit user
execution; such as when an option is
selected from a drop-down list.

RUN SCRIPTS

% O

b2

solve debt

=
projects

only p1 consolidate

These are simply Excel Icons designed to communicate what macro to run. This is
from an advanced portfolio model where it needed to be very clear what to do. The
time to setup is say 10 minutes means the next weeks and months are easy.

build + solve

&l el & X ok

sensitivity clean
tables names

prepare Clear
assumptions

speed test

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

<|

FOUND
ATION

In this section you will see our go-to approach
for laying out any routine - especially for
solving debt, running scenarios and interacting
with the spreadsheet for normal situations.

Outside of transaction modelling we tend to
use C# (C-Sharp)- when things get funky.

R B e X SR
¥

1

IIIFIHU

an) AR e

él

PSEUDO CODE

In Financial Modelling — The Guide for Essential Professional Skills we
advised to not start a Financial Model in Excel but by thinking about
the design and documenting, this can be a sketch or whatever. An
efficient professional outcome is very difficult to achieve if you don't
follow this; the same is true for VBA code.

Solving a problem using VBA is broken into two parts:

1. Expressing the problem using business terms being sure to
capture all of the facets of the problem. We call this Pseudo Code
— for which you do not need to know the VBA language.

2. Conversion of the expressed problem into code

We always start with Pseudo Code — it sounds fancy but it's just the
outline of what you want to achieve, what steps will be required -
without worrying about the code itself. Think of this exercise as you
are explaining your desired outcome to somebody else, who knows
syntax, who will do it for you.

In 1994 Nick used to have send code overnight to NASA Jet
Propulsion Labs to be run — when you have a 24 hour wait for the
results it forces you to think ahead!

Practically, just like in the spreadsheet, requirements change so your
mission is to think ahead and capture 90% of this before you start
coding. It sounds like it takes longer than ‘just getting started’ but our
clock is always ticking so we wouldn't do it if wasn't faster!

Key considerations are:

= What parts of the spreadsheet will the code interact with — do they
exist yet or do you need to build them?

= What needs to change or be set up before performing any
calculations?

* How do you want the spreadsheet "left’ when the routine is finished?
You appreciate this part more with experience..

Here is some pseudo code to construct a simple scenario table — as you
become more experienced you find yourself writing this in more detail.

Cloar existing table conterts

Kemendber current Soenaris Namber

644/(//@ Scenario f/wrr 7 lo ﬂﬂw /

Caloutate 7

Copy the AP/ and paste ito the corresponding Kow
Restore Seenarts nundber back to the origiral ore
Caloatate ?

Fut the cursor somewhere aseful

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<l

https://www.vectorhq.co/learning

ANATOMY OF A ROUTINE

Ok — so as a starting point do this every single time. As you become
more advanced it changes a little, but this is the perfect recipe for
success for 75% of our VBA; the other 25% is a little outside of the
box. Our mindset is that somebody who “doesn’t understand VBA but
can read” should be able to work out what's happening. Don't skip on
any of the below — it's quicker and solid.

EXPLANATORY INFORMATION

A VBA routine that doesn't explain what it does at the outset and throughout is like a
cooking recipe that doesn't show the ingredients, no steps or measurements and

Explain what the routine does

then a photo of the result.

LETTING VBA KNOW THE WORDS YOU WILL USE

The way you instruct VBA to do change things in the spreadsheet and how to operate
on those values requires “words to describe things” such as DebtLimit and DebtDelta.

Declare variables

We keep all of these in one place —you don't have to, but it makes a huge difference.
Everything in modelling is generally better if it's organised.

WHAT CELLS IN THE SPREADSHEET ARE NEEDED

We need to associate the variables being used in the routine to locations in the
spreadsheet. These locations all need to be Range Named, if not any movement in

Establish the links to the spreadsheet.

Initialise the environment

the spreadsheet will not be tracked by the Routine.
For example, use “ScenarioNumber” not Scenario!D5.

“The calculation”

Restore the environment

GET THINGS READY LEAVING IT IN ORDER
There will always be something to set Resetting the model to the way you
up before a routine runs — this could be want it. Good examples are not leaving
clearing a cell, turning off Screen a live Scenario on Scenario 30 after it's
Updating, remembering values before finished or telling a user the routine has
they change. finished.

THE ACTUAL CALCULATIONS

The heavy lifting is made a lot easier because of the steps above meaning the ‘hard’

bit will be easier to read, update and debug. The contents of this part is entirely
dependent upon what you are trying to achieve.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

ANATOMY OF A ROUTINE

Let's see what this looks like put into practice. Don't worry about what

this one does or the colours — just the structure.

OPTION EXPLICIT

This is an often, over-looked aspect but should be at the top of each Module — it
forces your macro to only accept variables which have been explicitly declared. Useful

Option Explicit ‘

Sub FeedSolve ()
'
!

ed output from pass

to avoid at you in the code - because the consequences are a headache!

EXPLAIN WHAT IT DOES

It's important and useful to explain what a macro does — not an essay just a few lines.
It's one of those small things that increases User Experience (UX) and is also useful

Dim FeedMode As Range

Dim FeedCalculated As Range
Dim FeedPasted As Range
Dim FeedDelta As Range

Dim FeedLoopMax As Integer
Dim FeedLoop As Integer

Set FeedMode = Range("Physicals.Feed.Mode")

Set FeedCalculated = Range ("Physicals.Feed.Calculated"
Set FeedPasted = Range ("Physicals.Feed.Pasted"

Set FeedDelta = Range ("Physicals.Feed.Delta")

when you open it up months or years later!

DECLARE (DIMENSION) THE VARIABLES

Letting VBA know the Names of the Variables you want it to use and their type. There
are only a few Types you need to consider, 90% of the time they will be Range

FeedLoopMax = 30

FeedLoop = 0
FeedPasted.ClearContents
Application.ScreenUpdating = False

(somewhere in the spreadsheet) or Integer.

ESTABLISH THE LINKS TO THE SPREADSHEET

Set allows VBA to know what locations in the spreadsheet are tied to the Variables

0 Or FeedLoop = FeedLoopMax
FeedPasted.Value = FeedCalculated.Value

FeedLoop = FeedLoop + 1

that are Ranges. A helpful tip is to keep them in the same order and grouped by their
relevance.

INITIALISE THE ENVIRONMENT

This is where you make sure the Spreadsheet is prepared for what you are about to
do and anything that needs a starting value, for example how many loops do you

Application.StatusBar = "Solving feed: " & FeedLoop
Loop
FeedMode .Value = "Locked"
'Restore Environment

Application.ScreenUpdating = True
Application.StatusBar = False

want to run before it stops — a good failsafe.

RESTORE ENVIRONMENT

End Sub

This where the core instructions live. In this example we turn Screen Updating
You will note we've used line spaces back on (switched off in Initialise for a

to make it easier to read which faster compute time). It also restores the
becomes more important as routines Status Bar to say Ready rather than stay
evolve. on the last Solving Loop info.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

THE VBA ENVIRONMENT

Ele it View Insert Fomat Debug Run Iools Add-ins Window Help

REE g

2

PROJECT PANEL VES———

e vmapraect (host1)

This is where you will see all the
worksheets and modules available
in the Workbook. As you create
modules they will appear here — we
group the contents of Modules to
be relevant. For example: Debt,
Scenarios, Reporting

The lower panel you don't really
need to use much other than to

change the name of a Module to St ot _

be more relevant. There are some (tome) oot
! o — o

sneaky options here for hiding a oopeRTteh o

worksheet, but we don't advise it. baesescongionsCacia e

EnablePhotTable

Enableselection 0 - iNoRestricions
ame heett

Standardwidth o
Visble -1 - xiSheetvisbe

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

R —— 41

Option Explicit

End

Dim FeedMode As Range
icalculated As Range
d As Range
As Range
pMax As Integer
Dim FeedLoop As Int

FeedMode = Range ("Physicals.Feed.Mode")
FeedCalculated = Range("Physicals.Feed.Calculated")
FeedPasted = Range ("Physicals.Feed.Pasted")
FeedDelta = Range ("Physicals.Feed.Delta")

FeedPasted.ClearContents
Application.ScreenUpdating = False

0 Or FeedLoop = FeedLoopMax
FeedPasted.Value = FeedCalculated.Value
FeedLoop = FeedLoop + 1
Application.StatusBar = "Solving feed: " & FeedLoop

Loop

FeedMode.vValue = "Locked"

CODING PANEL

Once a Module has been inserted and ideally
named clearly this is where you write your code. You
spend 99.99% of your time in this area.

To start creating a macro type

Sub and the name and VBA auto completes the line
adding brackets and the End Sub routine. Everything
between these two lines will be considered when
you run the macro.

Because you cannot use spaces or special characters
in the Routine Name we recommend _ or
CamelCase to make it easier to name — this is
important because if you want to run it from a
button / icon within the spreadsheet you need to
identify it — also if you call it from another Routine
then it is clear what is being called.

Keep the names clear — no prizes for abbreviation.

INITIALLY

When you create a Module, you
will be faced with a blank
window...it's at this point you need
to know where to start! Don't work
in a tiny window — maximise it.
Because you only need one
Module window open at the same
time.

CALLING A SUBROUTINE

For ScenarioLoop = 1 To ScenarioMax

" & ScenarioLoop & " of " & ScenarioMax

the spreadsheet) to the value of this loop

ct the live line of the table

ScenarioTableCopy.Copy

'paste it into the corr
ScenarioTableAnchor.Off:

Scenar:
pPerformCalculate
SolveFacilityLimit

End If

ScenarioNumberActive.Value = ScenarioLoop
performCalculate

oLoop) . PasteSpecial (x1PasteValues)

Continueloop:

Next ScenarioLoop

before proceeding with next scenario

In Einancial Modelling = The Guide for Essential Professional Skills
we introduced the concept of Don't Repeat Yourself (DRY). The
principle is from code development. In essence only calculate
something once and then refer to it — in coding this means
breaking instructions down into their own “homes” and then call
them as needed rather than create one long script which may
have the same instructions as in another one — they should
instead all refer to the same Subroutine. In this example if a
change was made to SolveFacilityLimit it will flow through to all
routines that call it.

The more sophisticated a routine becomes the more subroutines
we create. A Master Solve routine may literally just be two lines
within a Loop structure:

= Call DebtSolve
= Call EquitySolve

<l

CALLING ANOTHER ROUTINE

If the Debt macro needs to run,
then rather than repeat the code
here we simply call the
SolveFacilityLimit Subroutine. Any
changes made to that would
automatically flow through too
other routines which reference it.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

https://www.vectorhq.co/learning

LOW COGNITIVE LOAD

One big slab of code is the equivalent poor practice to one long
formula in the spreadsheet.

Sub Fee

Breaking blocks up, indenting the logical hierarchy, and adding
explanations is essential to making the code easier to read —
spending less time figuring out what is happening, where and when.
This approach is essential for all users, especially you as a developer
to aid debugging — which is a normal occurrence - and adapting as
the requirements change.

IDim
IDim
IDim
IDim
IDim
IDim
1

Iset
Iset
Iset
Iset

If you are working under transaction pressure these are the parts that
make it more reliable so you can be confident in the results. Think of

a routine like a formula in Excel, it's better to break it up into bite-size Iree
pieces than one monster! e

Iree
Iapp
1

INTENDING

"Tab” moves selected text ‘in’ by a
set amount — you can do on
groups of lines and if you get

code into ChatGPT and ask it to re-

yourself in a pickle then paste the II
I
format, then paste it back in. :
1 Loo]
o
LINE SPACING - :Fee
1 'Re
i 1 lapp
The more complex your routine P
I
1

becomes the more useful it is to
separate code with an empty line.
VBA ignores them and it pays huge
dividends via code Clarity and
lowering the users Cognitive Load.
There is nothing worse than a ‘slab’
of code when you are under time
pressure.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED
vectorHQ.co powering decision confidence

olve feed physi

physicals —————————————————
Ino Fntil FeedDelta = 0 Or FeedLoop = FeedLoopMax

dsolve ()

FeedMode As Range
FeedCalculated As Range
FeedPasted As Range
FeedDelta As Range
FeedLoopMax As Integer
FeedLoop As Integer

FeedMode = Range ("Physicals.Feed.Mode")
FeedCalculated = Range ("Physicals.Feed.Calculated")
FeedPasted = Range ("Physicals.Feed.Pasted")
FeedDelta = Range ("Physicals.Feed.Delta"

dMode . Va lu

dLoopMax = 30

dLoop = 0

dPasted.ClearContents
lication.ScreenUpdating = False

:FeedPasted.value = FeedCalculated.Value

:FeedLoop = FeedLoop + 1

1 . . .
IAppllcatlon.StatusBar = "Solving feed: " & FeedLoop
P

dMode.Value = "Locked"

tore Environment
ication.ScreenUpdating = True
ication.StatusBar = False

| INSPIRATION

Any text with a " in front of it will be
ignored when the code is
compiled. This simple example
doesn't warrant too much
commentary, but you will see in
other examples we lean on
commenting so that others know
what is intended but as importantly
we know what we are doing as we
work. The return on efficiency and
confidence is high!

r

BASIC LOGICAL STRUCTURE

Before considering Loops in the next section, it is important to get to grips with the logical structures that will be

needed in the tests to determine if a Loop needs to run or stop. Consider these like use IF(), OR() and AND()

functions in the spreadsheet — they are your pantry staples. Rather than describe them, as they are self-evident,

here are some examples.

EXAMPLE | IF

Using IF to determine whether to do something or not.

IF ABS(DebtDelta) > DebtTolerance THEN
{Keep solving}

ELSE
{Do something else or Stop}

END IF

If the result of a debt calculation is
above the nominated tolerance

level, then keep going. Risky as this
could just keep looping and you
would have to force a stoppage
which is not desirable.

EXAMPLE | AND

Using AND to check whether to do something or not.

{Keep solving}
ELSE

{Do something else or Stop}
END IF

IF AND (ABS(DebtDelta) > DebtTolerance, DebtLoop < = DebtLoopMax) THEN

r—

By introducing an AND into the IF
decision we can control the solving
loop not going beyond a fixed
number of loops. The value of
DebtLoopMax could be defined
within the debt dashboard or within
the VBA code.

This means if the debt doesn't
solve within say 30 loops, the
routine will stop — keeping you in
control and not sitting wondering

what is happening.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

'/

VARIABLE TYPES

Variables are the ‘words’ that describe concepts that VBA needs from you to ‘do-things’. Variable names are
by default declared within each routine. There is a concept called Global but let’s not worry about that for
now.

For example: You have a Scenario Number in a Scenario Manager, within the spreadsheet and you want it to
cycle through 10 scenarios then you need to tell it.

= ScenarioNumber (and where that lives in the spreadsheet) — this would be called a Range as it represents
something in the spreadsheet.

» ScenarioLoop which can go from 1to 10 in increments of 1 — this would be called an Integer because it
doesn't exist in the spreadsheet, so it's not a Range, it's only a construct within VBA and it only has whole
number values.

There are only a handful of variable types you need to lock down for most tasks:

VARIABLE TYPE USE CASE

Range Relates to a cell or array of cells within the spreadsheet.
Integer Usually used for loops and counters within VBA not the spreadsheet
: Mostly used for words / names. Lookup codes to find something within a string of values, FX codes, FY
String o2 , ;
years etc. The least commonly needed for normal transaction situations so don't stress over this one.
Single For numerical values defined within VBA rather than the spreadsheet where precision is not critical
Double For numerical values defined within VBA rather than the spreadsheet where precision is critical

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<|

LOOPS

An essential tool in “doing something until

something is satisfied” — usually the heart of
all debt and scenario routines.

Loops come in different forms which we
explore in this section.

LOOPS

As the name suggests, Loops will carry out a series of actions until a test is met. There are different types of

Loops, your choice of which, and the way it knows when to stop are critical to fast solving.

TYPE BEHAVIOUR

For.. Next Predefined number of iterations (loops)
Do Until Checks at the end of each iteration (loop)
Do While Checks at the beginning of each iteration

(loop)

Solve feec sicals

Do Until E‘eedDelEa = 0 Or FeedLoop = FeedLoopMax
FeedPasted.Value = FeedCalculated.Value
FeedLoop = FeedLoop + 1
Application.StatusBar = "Solving feed:

" & FeedLoop

Loop

Which one of these to use is not always obvious.
It depends on the situation and how you define
the test.

EXAMPLE

This is a Copy and Paste routine to solve a
physical feedback process, in a mine processing
operation. The calculated value is copied over the
pasted value until the difference between the two

lines (FeedDelta) = 0 or the number of Loops
executed hits a predetermined maximum. It also
sends a message to the Status Bar of where it is
up to ,so the user isn't left wondering.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

NOTE

The more experienced you become the less you
find yourself using a For Next Loop because you
become increasingly more focused on defining
conditions that check if a Loop needs to run or
not. If you are just starting out and creating a
table that always has say 20 rows of scenarios
then it does the job.

<|

LOOPS | FOR NEXT

The For...Next loop in Visual Basic is one of the most commonly, used Loops for simple

applications — especially tables. It allows you to execute a block of code a specific number
of times, based on a counter variable that is incremented or decremented in each LOOP DIRECTION
iteration. Perfect for simple 1D and 2D tables where no ‘decision’ is needed for it to stop —

) . ; Loops do not need to always go ‘forwards’ —in
easier to read and understand when you are first starting out. some situations you may want to work from the

end and work backwards. LLCR break-evens are
good examples of this.

THESE CAN BE SMART

From and To do not need to be
static values like From 1To 10. They
can take a feed from a range —
which is useful for situations like
calculating a Commodity price
LLCR breakeven which is not
algebraically possible.

From To
Ste
value To value P

Step size
Step is an optional parameter, the
default value if not explicitly

entered is +1.

For advanced cases we can make
Step-Size a calculated value so that
solutions are found faster.

Instructions to execute

A good example of a For Next Loop is the creation of a table of
-—- Next Scenario results where you want to run 15 Scenarios, without any
decisions, and paste the results into sequential rows.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<|

LOOPS | DO UNTIL

Do Loops are the most common control structure to perform an
action according to a test. There are two types:

1. Do While
2. Do Until

Your choice of Do Loop is based on the logic you are wish to
execute.

=== Do Until Test

Instructions to execute

=== Loop

When to use Do Until

A Do Until loop will run the contained logic even if the test is passed
but then stop. It checks at the end of each iteration (loop)

The most common issue with
Loops not working correctly, or not
running at all are:

* Incorrect choice of While/Until
= The way the Test is constructed.

Application of Do Until:

Copy and Paste a calculated value until the two lines give the same
result, the primary way to break and control circular references. The
test in this case would be that the absolute value of the difference

between the sum of each line is <>0 or within a specified tolerance.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

<l

LOOPS | DO WHILE

When to use Do While

A Do While loop will not run the contained logic if the test is passed.
It checks at the start of each iteration (loop). This is a subtle but
important difference especially when working with debt solving
routines.

=== Do While Test

Instructions to execute

=== Loop

WARNING

The most common issue with
Loops not working correctly, or not
running at all are:

= Incorrect choice of While/Do

= The way the Test is constructed.

= |nitial conditions meaning the
Loop doesn't start.

Application of Do While:

In solving a debt repayment profile that maybe because of an
activated sweep mechanism must not ever solve the next repayment
if the debt is repaid in the preceding period. Running it would cause
issues with payments beyond the debt being repaid.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

<l

DE
BUGGING

Excel spreadsheets and VBA do exactly what
you ask them to - so when they're not
working - let us show you the core
techniques to find out why your routine isn't
doing what you want it to.

DEBUGGING | Add Breakpoint

There are three essential tools to know and more often that not we write code that doesn't need hardcore
debugging — but when you start out these are the tools you need to know.

» Add a Breakpoint — allows you to systematically pause and inspect.
» Add Watch — track the values of results as the routine runs.

= Step-Into / Over / Out — run 'bit-by-bit" in different ways so you can assess what is happening.

Sub LockPrincipal (
'Once the debt is
'Means that scen

ed in the base case this macro locks the principal schedule in
on't push the loan life out

']?;r‘lEn?i-Dl:J variables ADD A BREAKPOINT
Dim PrincipalMode As Range

Dim PrincipalDynamic As Range .
Dim Principallocked As Range Select the line you want the macro to stop at and

Dim PrincipalDelta As Range press F9. Remove it by pressing F9 again.

'set links to workbook o This allows you to run a macro only up to a select
Set PrincipalMode = Range ("PrincipalMode")

Set PrincipalDynamic = Range ("Principal.Dynamic") - DOSVEIOV’W which'is \{ery he‘pmI when you want to

Set Principallocked = Range ("Principal.Locked") understand what is happemng rather than

Set PrincipalDelta = Range("Principal.Delta®) running the whole thing and trying to work out

liora the problem. A good example is solving debt but
Do Until Round(Abs (PrincipalDelta), 2) = Q skip solving the DSRA for now.

PrincipalLocked.Value = PrincipalDynamic.Value

PerformCalculate
Loop

'Lock in principal schedule
PrincipalMode = "Dynamic"

PerformCalculate ' to make sure values are updated

Principallocked.Value = PrincipalDynamic.Value
PrincipalMode = "Locked™

PerformCalculate ' to make sure values are updated

End Sub

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

DEBUGGING | Add Watch

Adding a Watch allows you to keep an eye on the value of a variable throughout the
solve routine. There is a lesser used equivalent in the spreadsheet too which is useful but

buried. We often use it to track critical KPI all the time without needing to import the
value into the worksheet.

sub LockPrincipal()
'once the debt is
'Means that scenarios won't push the loan life out

'Dimension variables
Dim PrincipalMode As Range

sized in the base case this macro locks the pr

schedule in

ADD A WATCH

Highlight the component you want to ‘watch’,
right click and select “Add Watch”. The Add

Expression:

Round(Abs(P

Cancel
. Context
Dim PrincipalDynamic As Range Watch box will pop-up where you can choose broceure: | LockPrincipal
Dim Principallocked As Range how you want to watch it. Help
Dim PrincipalDelta As Range

'Set links to workbook

Set PrincipalMode = Ranfe ("PrincipalMode™)
Set PrincipalDynamic
Set PrincipallLocked = Rfnge ("Principal.Locked")
Set PrincipalDelta = Rajge ("Principal.Delta™)

'Iterate,

plelRej AL BN |Round (Abs (PrincipalDelta), 2)| U

ange ("Principal.Dynamic")

When you press OK the Add Watch Window will
pop up showing all Watches you have created —
these are ‘live’ so as the routine runs you can
track the results.

Module: Debt
Project: VBAProject

Watch Type
© watch Expression

() Break When Value Is True

(_) Break When Value Changes

PrincipalLocked.Value = PrincipalDynamic.Value

Sub LockPrincipal (
PerformCalculate o v

schedule in

Loop

ode As Range
Dim PrincipalDynamic As Range
Dim Principallocked As Range
Dim PrincipalDelta As Range

'Lock in principal schedule
PrincipalMode = "Dynamic"

PerformCalculate ' to make sure values are updated

Principallocked.Value = PrincipalDynamic.Value
PrincipalMode = "Locked"

te

Do Until Round (Abs (Principalpelta), 2) = 0
PerformCalculate ' to make sure values are updated principallocked.value = PrincipalDynamic.value
Perforncalculate
End sub
«
Watches
Expression [Value [Type [Context
&5 RoundAbsPrncipabata) 2 <Out of contoxi> VarartEmpty Debt LockPrincpal

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

DEBUGGING | Stepping

Stepping allows you to incrementally work through a routine without just letting it run all the way through. There are three
primary Step methods.

= Step-Into — Press F8 to run the macro line by line

» Step-Over — Press SHIFT + F8 to skip the next logical structure — useful for when you do not want a Subroutine to be
executed.

» Step-Out — a little more advanced, when you are within a logical structure, say a loop, you can use this to exit that specific
logic and go back to where you were. Kind of.

sub LockPrincipal() Debug W X
'Once the debt is sized in the base case this macro locks the principal schedule in
= 9_‘|| B s I

won't push the loan life out lg b u a9

i

'Dimension variables
Dim PrincipalMode As Range
Dim PrincipalDynamic As Range

Dim PrincipalDelta As Range TOOLBARS

'Means that scenarios
Step functions Add Watch

'Set links to workbook There are a several useful commands accessible

Set PrincipalMode = Range ("PrincipalMode") from the Debug and Edit toolbars.

Set PrincipalDynamic = Range ("Principal.Dynamic")

set Principallocked = Range ("Principal.Locked") It is beyond the scope of this document to go

Set PrincipalDelta = Range("Principal.Delta") through each one but in training we introduce

T these as needed. We find they are not heavily
] Do Until Round (Abs (PrincipalDelta), 2) = 0] used if you use the shortcuts already prescribed

but good to know they are there.

PrincipallLocked.Value = PrincipalDynamic.Value

PerformCalculate

When you are stepping the active line of code is
highlighted in yellow, so you know where you are
up to. Combine this with an Add-Watch to fully
appreciate the variables values.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

SAFETY MEASURES

When working in VBA there are a few things to be aware of which will affect the speed of your
work and manage user expectations. Keep in mind these Safety Measures protect you from
losing your work — don't be the instigator of a Denial-Of-Service attack on your own work!

» Toptip! You can't Undo a Macro once it's run — Excel’s Undo-Stack is cleared. Therefore, save
the file before running. See our Modelling Guide on file saving to avoid any issues.

» Build in Fail Safes into all Loops — you do not want to be in the situation where you are
pressing Escape hoping the macro will stop when it's clearly in a never-ending death spiral!

» [f you are about to run a macro that has consequences, like clearing information and
rebuilding, or will take a long time to run — like building 20+ assets as individual sheets or a
long debt solve then it's helpful to pop a message box up that explains what is about to
happen with an Ok or Cancel button — this is not a fancy thing that takes time — its's a really
helpful step to avoid inadvertent execution.

» [f you have turned Screen Updating off, you may need to force Excel to update messages in
the Status Bar / plot's etc,, this is achieved using the Do Events command. Keep this in mind if
you can't see anything happening. Do Events is like a wake-up call for the spreadsheet part of
the file.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<

https://www.vectorhq.co/learning

DESIGN
FOR SPEED

A macro can only be as good as the
underlying model it operates on -
conversely, a good model with a poorly
written macro yields the same inefficiency.

In this section, we introduce some key
concepts we always consider to ensure both
parts of the system operate as efficiently as
possible.

DESIGN FOR SPEED

For many routines speed will not be an issue — however in larger
models and especially debt solving and portfolio models it becomes
a 'whole situation’ — especially under the time expectations of a
transaction.

We are always comfortable that our routines are running at an
optimum speed by following the guidelines below.

= Turn Screen Updating Off (once you know it's working...)

» Establish the link to the spreadsheet once only using Variable
Names and the Set instruction. If you don't do this and reference
the range each time it is used VBA is going back and forth more
times than it needs to.

» Do not execute more Loops than you need to — this can be

controlled with Tolerances. For example; no need take 30 seconds

to solve a $100m loan facility to $0.0001 when it solves to $1in 2
seconds.

» Don't Repeat Yourself (DRY) — only calculate something once and

then call it as needed. To be fair - this doesn't change the speed
of a routine, but it has a huge impact on your efficiency and
effectiveness.

Turn Calculation Mode to Manual and then only Calculate when
needed. It is good practice to then return calculation model to
automatic or even better inspect and remember the calculation
mode as part of initialising the environment.

Open your Excel file as “One instance of Excel” — see our “Financial
Modelling — The Guide to Essential Professional Skills” to learn
more.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<

TRACKING PEFORMANCE

For Debt Solving routines it is very helpful to know how long it A time tracker looks like this
is taking so that if something changes and it takes longer you
don't slowly get used to it taking longer and can find a way to
make it work faster.

This approach worked well for many years and is worth the
time to implement. It has been superseded now with a dynamic
macro consol (see Inspiration section) but if you want to keep
an eye on speed try this.

= Within your debt dashboard, or somewhere else easy to
find, create two, time formatted cells and name them
appropriately something like Time_Solve_PreviousRun and
Time_Solve_ThisRun.

= Within your macro create a time tracker that starts upon
execution and finishes when it is complete.

= Before running paste, the ThisRun into PreviousRun, this
means when it is finished you will have a comparison to this
time vs last time.

= Alternatively, as illustrated here you could show the
information in a pop-up box upon completion.

= Keep in mind that whilst a single calculation may appear
instant — when there is a Loop that needs to run 10x within a
loop that needs to run 10x within a loop that needs to run
10x you are now dealing with a scalar factor of 1,000.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<

VECTOR

FOCUS

We develop transaction ready models for a wide range of situations, with
deep experience in

= Renewables — especially multi-technology, multi-regional, portfolios.
= Mining - all Metals, Minerals and Processing.

= Manufacturing — Chemicals and Green Fuels.

= Infrastructure and Regulated Assets.

= Corporate Business Modelling.

We deliver in-house, in-person training for your teams, we specialise in
working with small groups and building capability over their careers. Our
approach has been developed over decades, is 100% hands-on and we
are told our passion shows. Our current courses are:

= Financial Modelling Fundamentals

= Project Finance Modelling

= Modelling Renewables Projects

= Modelling Three Way Financial Statements

= Advanced debt modelling using Visual Basic

If you'd like us on your side in a transaction or to build your teams
capabilities contact us at

mailto:hello@vectorHQ.co?subject=Hello!
https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

INSPIR
ATION

Take a look at common applications where
we lean on VBA and know that even the
most complex debt-solving scenarios can be
achieved with a remarkably small toolkit. We
can teach your team this.

T

REGULAR APPLICATIONS

We use Macros for Outside of these applications we use C-sharp for:
= Solving the full range of Debt and Equity Structures = Model auditing
= Creating Scenarios, especially when Debt or a Physical process needs to = Formula manipulation and efficiency

be solved for each run.

= Creating 1D and 2D Sensitivity tables — noting that if the output is Equity
returns debt may need to be solved for each element.

= (Creating Reports (Exec Summary and 3-Way Financial Statements for all
Scenarios) and exporting to another Workbook.

= Importing and exporting data
» Spawning portfolio assets from a Master asset

= Consolidating Portfolio information into one worksheet, dynamically —
avoiding the nasty INDIRECT() function.

= Tracking changes in the worksheet

= Anything that needs to be automated, such as Data Grouping and
resetting the Freeze Pane position on each worksheet upon a Save and
Close event

= Calculating break even price profiles when an algebraic solution is not
viable.

= Creating and Clearing Range Names

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<

INFORMING THE USER

There is nothing worse than not knowing if a macro should be run or
not but even more, when one is running what is it doing? Has it
crashed? Do | need to do anything?

Sub SolveFacilityLimit Button()
Dim Answer As Integer

Answer = MsgBox("You are about to size debt and change principal repayments." _
vbNewLine _

vbNewLine _

"It sculpts principal repayment, solves fees and DSRA/c funding." _
vbNewLine

&

o You are about to size debt and change principal repayments.

vbNewLine _
"It will take ~30 seconds, to improve speed close other files open in the same instance of Excel."
vbNewLine

vbNewLine _

"Progress will be displayed in the macro console.", _
vbInformation + vbYesNo, "Vector - Biomethanol Investment Model")

It sculpts principal repayment, solves fees and DSRA/c funding.

It will take ~30 seconds, to improve speed dose other files open in
the same instance of Excel. ' . .

R R R R R R

Progress will be displayed in the macro console.
If Answer = vbNo Then Exit Sub

BackUpEnvironment False, "Solving facility limit."

Yes No SolveFacilityLimit

RestoreEnvironment

End_Sub

LAUNCH INFORMATION

For time expensive or extensive
routines, it is very helpful to make
sure the user wants to run the
routine. It is very easily when
working too fast to click the wrong
button or even do it by accident.
This also gives you the opportunity
to set expectations. Small things
like this contribute to higher UX for
minimal extra work.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

INFORMING THE USER

Whilst a routine is running it requires only a simple line to update the
status bar within Excel to inform the user of progress.

STATUS BAR

The status bar is a useful place to
update the user on progress — this
is also very useful to you as the
developer. Commands are readily
sent to it with simple syntax. This
does not add a speed overhead.

Cover | Guide | Structure | | Tracker | Summary

GOOD HOUSEKEEPING

Remember to set it back to Ready
once completed with the
command:

Application StatusBar = False Cover | Guide | Structure | Tracker | Summary

Ko trtrgroMA S tréyss A A / AV [ESHAE 86

KO gAY ESTOME §0AV VY ARME S8R #2260 —8HPHBMD/C SVBR\ - 617 8 / #HAME 30 (B8 6P P6—A

EASY AND FLEXIBLE SYNTAX

Whatever text is contained within
quotes will be displayed as static
text. Information is joined using & -
called a string operator. Here
variables have been included which
you can see are the basis of the
status bar in the second image.

BRpplication.StatusBar = "Running | "™ & "Scenerio " & ScenarioLoop & " of " & ScenarioLoopMax & " | Solwving Debt"

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<|

INFORMING THE USER

For debt-solving routines, it is very helpful to know how long they
take so that if something changes and they take longer, you can e ———————"
respond accordingly. sole cleared

As debt is solved, it is crucial to track what is happening. This can be
achieved by updating cells on a dashboard. Our approach provides

H H . funding loop 1.
the user with a wide range of status updates—an invaluable tool for ‘
developers looking to identify calculation inefficiencies. : Lving C n funding
These updates add no overhead to the solve speed, unlike updating : funding loop 3.
a cell in a worksheet. This console floats like a menu and is Clodsting 0ol
particularly useful when structural changes may be causing solve DA G L
iSSUGS. 18:52:14 zziziggtiﬁgségeé;g; funding loop 5.

. s . . . 1 15 Calculating 00;@0;01
Once identified, these issues can be resolved or optimised by e e I
managing tolerances or adjusting the order of solve loops. Coleulating 0010001 eon 7.

8:52:18 Calculating

Our primary goal is to gain an in-depth understanding of what is
happening under the hood, ensuring we achieve optimal
performance.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

A POP OUT CONSOL

We use a Form to display the
information — this is not so readily
achieved with basic knowledge but
as you harness more advanced
concepts you can open up new
ways of enhancing the UX of a
model with very little extra work.

<l

BUILD A SCENARIO TABLE

This simple routine for creating a Scenario Table that also solves debt — it's
not intended to be a tutorial but to highlight key components covered

earlier in the document.

» Embedding code

= Declaring variables with easy-to-read names

» The Structural Anatomy of a Routine

= Calling a Sub Routine

= Using commentary to show what key parts are doing

CALLING ANOTHER ROUTINE

If Debt needs to be solved simply
provide the name and it will run
before this routine continues.

Sub BuildScenarioTable()

Dim ScenarioNumberActive As Range
Dim ScenarioNameActive As Range

Dim ScenarioTableAnchor As Range

Dim ScenarioTableInner As Range

Dim ScenarioTableCopy As Range

Dim DebtMacroRun As Range

Dim ScenarioNumberOriginal As Integer
Dim ScenarioLoop As Integer

Dim ScenarioMax As Integer

1

I

1

1

1

1

1

1

1

1

1 t! in t

| Set ScenarioTableInner = Range("ScenarioTab!
1 Set Scenar%oTableAnch?r = Range("ScénarioTabléAnChor")i
1 Set ScenarioNumberActive = Range ("Scenario.Number.Active")
| e e e e
1

1

1

1

1

1

1

1

1

1

1

1

1

1

t]

Set DebtMacroRun = Range ("Flex.DebtMacroRun")

ScenarioTableInner.ClearContents
ScenarioNumberOriginal = ScenarioNumberActive.Value

For ScenarioLoop = 1 To ScenarioMax

(in the

ScenarioLoop

ScenarioNumberActive.Value
PerformCalculate

Tf ScenarioNameActive = "Spare" Then GoTo Continueloop

k if Debt m
If DebtMacroRun = "Ye
SolveFacilityLimit

R

ed (a
op = 1 Then

Equity (Levered)

[|
Lscenaiio ———['esis passed | Operation 45) [oy US> rep U | Po/o2ck 0 5 T rep e |]
Methanol price down 10% Pass 25 2896 2693 861% 1158 @73) (254) 13.47% 967
Methanol price down 15% Pass 25 2175 2022 825% 1158 (403) (375) 12.55% 967
Methanol profile 2 Pass 25 2896 2693 861% 1158 @73) (254) 13.47% 967
Plant efficiency down X-2% Pass 25 4180 3887 9.19% 1167 29) @27) 14.86% 967
s 5 T e
Con delay 2 months Pass 25 3705 3445 865% 1225 (649) (604) 12.34% 1258
Purchased pellet price up 10% Pass 25 4310 4008 925% 1158 06 06 15.03% 967
Woodchip price up 10% Pass 25 3670 3413 895% 1183 (16.4) (152) 14.17% 1017
Tanspor price up 10% e s S0 as oz Hse 05 o5 sem bl
Tanspor rice up 20% e s S0 as oo nse 05 o5 se bl
Ramp-up profile 2 Pass 25 406.6 3782 9.12% 175 (11.5) (10.7) 14.45% 1017
People and other costs up 10% Pass 25 3957 368.0 9.08% 175 (8.8) (82) 14.56% 992
Combined case 1 Pass 25 1585 1474 791% 1217 (58.1) (540) 11.57% 1042

ScenarioTabl

ScenarioNumberAct.
performCalculate
SolveFacilityLimit

End If

ScenarioNumberActive.Value = ScenarioLoop
PerformCalculate

1 1 of the
ScenarioTableCopy.Copy

!."ext ScenarioLoop

1

1

. e the

:.\c UpdateMacroConsole "Restoring original scenario®
1

1

1

k,

ScenarioNumberActive.Value = ScenarioNumberOriginal
SolveFacilityLimit

performCalculate

Application.StatusBar = False

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

vectorHQ.co powering decision confidence

THE ENGINE ROOM

The “Calculation” part is made
easier to read and edit because of
the house-keeping steps taken
above.

t) to the

UpdateMacroConsole "Building scenario " & ScenarioLoop & " of " & ScenarioMax

of this loop

'Pa it into the ndi W
ScenarioTableAnchor.Offset (ScenarioLoop) . PastesSpecial (x1PasteValues)
PerformCalculate

Contfnueloop:

DEBT DASHBOARD

This is the top part of a lite Debt Dashboard which combines the key numerical parts of the Term Sheet with key output to enable sense checking. We
lay components out in a sequential manner with a focus on items that give us confidence the solving routines are working. Do not confuse this with an

Executive Summary or an Input sheet it is a rare instance of inputs and outputs being on the same worksheet.

n Solve Construction Debt and Equity. X .)
viiel Standiy_Tota Lite use of Conditional Formatting
it o | saem enables the user to easily visually
st bargin e spot when something has not
EXPLAIN TO THE USER ! Umit__ braun *Limit Delta solved. Green = Ok, Red = Not Ok!
Construction debt usD'0co 170,000 170,000 2.00% - L. .

h) of e This is an example of lowering the
Int e grey boxes is a bﬂe_ . o Cognitive Load through simple UX.
description of the macros impact Mezzanine uso'e00 E : 270 FEe th these b
and anything that is important to conmn On/ O 7 S Yqu can go et L NS Ui
know. It's not extensive — nobody] with expe{r\‘enﬁe ykou know what the

8 U Framt c
would read it all. most usetul checks are.
COR Facility 1 10,000 - 50% 2.00% 475% % & Months
Master Solve Overal nitial funding
Solve Debt and Equity on/off? On/Of? pasted Calcd Months Cap Pasted Calcd nitial __Overal 1
Solve DSRA - Initial DSRA/C 1 1,625 - 3 5000 52172 | 52,172 |
Solve DSRA - Target Balance
SOURCE OF INPUTS ? on/ 0 Vv pplied
Proceeds account 7.500 -
In this case the blue cells are input
cells but in deals where we are n-"e'-"l"epavmem preferences. Salloon u Covenants.
. . Senior Mode Grace DSCR Repaid Years %Drawn USDM Sizing Lock-up Default
assessing different lenders terms Sase repayment | Locked Gwonths 150« 30mnjzs 300 | s 51000 DscR (1.atn) teoe | 12 110
these are often located in a eean — =
ek 1500 G am
o H H On/ Off ? <Lock Up =Lock Up PLCR 1 70% 1.40:
Scenario Manager and linked in. Aditonal sueep e == s —
Opyr Opyr2 Op Opyr5 Opyr6 Opyr7 Opyr8+ Min cash float 7,500 |
Margin (%pa) a 200% | a00%| 400%| 400%| 400%| a.00% Covenant grace 3 Months
Mezzanine Repayments Cov Grace Choice Manual Project
Equal payments over 10 3 Months Analyse PLCR over Manual 31/Dec/28 31/Mar/a2
SELECTED OUTPUT
In this instance we've collated the Il outout- repayments and coverage.
principal repayments from a Repayments DscR
H] H ase - - - - menth lock back (quarter) .90x .90x .50x
monthly debt sheet into a Financial ol | S B B S S B Pl s v v
—_ ! Total - 5424 48.70 16.06 - - - - 119.00 12 month lock forward 1.90x 2.83x
Year summary — because that's
i Drawn / id Drawn Base Sweep Net Vears LLCR PLCR RTR .
whaLthg dgilhteam were focussing semorrepaymentfaciity | 170000 1so00) - | 1000 300 LERPLCR s oo iz azsn We drive all covenant tests, forward
on. Having it here means a user ostoverrun focl - - - - i
doser 9 g itoh b o N Last peiod surplus TR I T TR T and backward looking from one
oesn't need to switch between seniorrepaymentiociity 30/un/2sl 253 19ox| 063|063 Iocziion o et a8 the Tamm SEst
sheets to see what is happening. N N S s sas updates an unfamiliar user can
N H ® Principal - Base W Principal - Sweeg @ Inauaren Sidre
It is also another place to build an Senior debt services (USD M) = Debt coverage ratios s et make the changes and know what
additional test to be incorporated ° - [- macro needs to re-run.
. . e 350k i i
in the Master Test Panel in the " w3 jo wn
model. 2 H H | 22 W =

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

PORTFOLIOS

There are several ways to build a portfolio model, over the past few years we have developed many portfolio models and optimised our approach to
minimise speed, maximise User Experience and Clarity. There are a lot of considerations to be navigated, and many are non-trivial, but the result
includes:

» One master asset (project / worksheet) to be spawned for up to ~250 individual assets (project / worksheet). 250 is extreme but many portfolios
commonly have 10+ assets.

= Solve debt at project level, a bundle of projects or at portfolio level.
» Only include live projects, either structurally (only exists when required) or dynamically (exists but is switched off).

= 100+ flexible parameters to be aggregated, at asset level resolution.

Accommaodates 1 asset or up to ~250 with existence and inclusion status managed by a dedicated management control panel.

Summary = Report \ET! [|Funding ||Scenaric |P1 | 'P2 | P3 P4 |P5 ' P6 |[P7 |[P8 | P9 P10 (P11 | P12 |[P13| [P14 | All Portfolio

MASTER PROJECT

ASSET / PROJECT SHEETS

Inputs can still be presented VBA allows you to not only avoid working It is very useful to be able to quickly
traditionally, located in dedicated across multiple sheets which is very risky, by inspect any one of the individual
Input sheets. These are regularly having one master worksheet and replicating assets / projects — but showing too
expanded to for say DevEx and including range name management. many is overwhelming. VBA can be
CapEx schedules being on different The diick oF & lbuitien buillds et ithe et used to show only live / active or

sheets. collapsing all of them until they

portfolio or only selected assets. An incredibly !]
want to be investigated.

powerful application of VBA — especially when
solving debt across multiple assets. The options are endless to ensure
the model is easy to navigate,
increasing the User Experience.

INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION
vectorHQ.co powering decision confidence

<|

VECTOR
WHEN IT

MATTERS

Our purpose is to develop elegant solutions for complex situations enabling
stakeholders to make confident investment decisions, build team capabilities
- as trusted advisors. We can be in for the deal but usually once the deal is
done our client’s ask us to work with them each subsequent time and train
their teams.

Expertise — our two principals deliver decades of hands-on experience for
100% for your engagement.

Responsiveness — here when you need us.

Mission focused — your project is our project.

Knowledge sharers — no restrictions, no licenses.

If you'd like us on your side in a transaction or to build your teams
capabilities contact us at

mailto:hello@vectorHQ.co?subject=Hello!
https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

