
Financial Modelling
Understand the leverage possible with VBA

Please do not print this document.

powering
decision confidence

Designed to be viewed at full screen. Created by Vector Financial Modelling. 2025 – E&OE. All Rights Reserved.

While there is no single right way to approach financial modelling, we have refined
our method over 30 years to deliver confidence - championing clarity, user
experience, and integrity while prioritising certainty and minimising errors. VBA is an
essential tool for professional financial modellers; we’d like to share some insights to
give you inspiration to getting to grips with it or some pointers on best practice if
you are already using it.
VBA has a higher barrier to entry than using a spreadsheet but once you know the
basics you can solve 95%+ of typical transaction and reporting challenges – well
they no longer become challenges!
This advice comes from both a Theoretical Astrophysicist / Project Financier and a
seasoned software architect both dedicated to financial modelling for a combined
tenure of 35+ years modelling transactions; we’d like to think we have something
passing on!
We dedicate our time to a select number of client transactions, in-house training
and our own project investments – so there is only so much we solve; however, by
sharing this insight into how we work we aim to give you a boost - or a Red Bull F1
pit-stop experience if you’re already racing.
Wherever you are on your journey, we’re here to help you work smarter, not harder
- spending less time tinkering with spreadsheets, more time confidently closing
deals and powering ahead.
Enjoy our thoughts and approach, we hope it helps. If you like what we do check
out vectorHQ.co

Nick Ben

PAYING IT
FORWARD

We encourage you to share
with your colleagues.
Please keep the document
whole to preserve the
structure, intent and spirit.

https://www.vectorhq.co/

This Guide is intended to open the door to appreciating the power of
well-designed and user-friendly VBA specifically for transaction
financial models.
It is not a ‘how-to’ but a lite ‘how-we’ utilise VBA for transactions;
we’ve worked to a place where there is no situation that we have not
been able to solve relatively easily and would like to pass this on.
VBA is an incredibly powerful tool that is not often used properly,
leading to its unfair reputation for turning models into Black-Boxes.
Digesting this guide should enable you to avoid this Black-Box issue,
unlock the full potential of your model and take a step closer to
becoming the modelling guru in your team. In particular, the Debt-
Guru!
This brief guide will cover the essentials of how we use VBA for
automation and problem-solving, which are central to Debt/Equity
Sizing and Scenario Analysis – our primary focus on transactions.
If this guide resonates with you ask us about training, if you are
facing a transaction and need it go to smoothly ask us about how we
can support.

INTENTION

MODEL
DEVELOPMENT TRAINING

INTRODUCTION
What does VBA do? I’m not a coder ?! Easy Execution

FOUNDATION
Pseudo Code Anatomy of a routine

LOOPS
Do WhileOverview For Next

DEBUGGING
Overview Safety measures

DESIGN FOR SPEED
Overview Tracking performance

INSPIRATION
Regular applications Informing the user Build a scenario table

The VBA environment

Calling a subroutine Low cognitive load

Debt dashboard

Common logic

Basic logical structures

Variable types

Do Until

Add watch Stepping

Portfolios

https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

INTROD
UCTION
We think of VBA as ‘half of modelling’ as it
opens-up different ways of working and it
automates things you would never do manually;
and even if you did would be risking manual
error. Whilst learning is never ending the
essential tools can be learnt in a day in the right
environment.

WHAT DOES VBA DO?
In a nutshell - VBA allows you to interact with a spreadsheet in a programmatic way, enabling automation – it
might sound boring but is super powerful.
For us it’s an essential tool for solving capital structures, creating scenarios and advanced output as well as
implementing structures which to do manually would be impossibly slow to create or manage.
It has been embedded within Excel for 30 years – and in that time it has not really changed. As the name
suggests it is a fairly, basic programming language which allows you to manipulate your spreadsheet. If you
are a model developer or user in the financial sector, it makes you quicker, avoids manual errors but also
provides new structural solutions to problems where the number of dimensions are an issue.
VBA is essential for:
 Debt and equity sizing and principal repayment management
 Advanced scenarios and sensitivities – inc. Mine Plan management
 Portfolio and cohort modelling
 Report generation
 Automating anything you need to do more than once!

SPREADSHEET VBA

From anywhere in your usual Excel
workspace press ALT + F11 to open
the VBA interface.

OPEN VBA

ALT+F11

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

I’M NOT A CODER ?!
So what?! If you can think logically and know what you want to achieve the “code” is the easy bit – you just need to know where to start. This
guide will show you the core parts of what you need to know and if you want to really cement your knowledge, then let’s do some Training. If
you can describe what you want to achieve to somebody who knows VBA – you are 75% of the way-there. VBA will do exactly what you tell it
to so if you can do things in the right order with the correct syntax – then you have an awesome tool at your disposal.

We can teach you the approach and syntax needed to harness VBA, for even quite advanced financial modelling, in a single day – the secret
sauce is in learning what to make the Spreadsheet do vs the Code; and when do it. Some of our most sophisticated capital optimisation routines
use nothing more than the most basic coding structure. Once you can ‘tell the spreadsheet part of the model’ what to do you then you unlock
analysis you would never dream of doing manually and implement structural solutions that you would have otherwise avoided.

Great examples include:
 Debt sizing – this is without exception only an iterative exercise in changing variables to satisfy constraints.
 You have 10+ scenarios to run and on some of then you need to re-size debt – you never want to do this manually!
 You have a portfolio of say 120 identical, or could be identical, assets / projects / business units but there is no way you want to manage 120

worksheets when you want to make a change – but make a change to the first one and have it flow through, priceless.
 2-dimensional table but each time the value is generated you need to re-size debt.
 You want to generate the full financial statements and Exec Summary of each scenario (not just a small handful of KPI) – you wouldn’t do this

manually as the next time something changed you would have to do it all again.
 You want to find the breakeven prices in each period over a project to achieve a target LLCR – where a change affects other changes you’ve

made!

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

AI is very good at helping you with Syntax. Currently it will provide
an OK routine given good instruction, but this is only a time saver
when you already know what you are doing! Use it for debugging
syntax not creating it.

EASY EXECUTION
You can execute (run) macros either using ALT + F8 or more usefully by attaching them to an icon or button within the spreadsheet. When the
user clicks a button, the macro runs – and we make sure they know what is happening – see further in this document. It is helpful to locate all
relevant macros ‘buttons’ in one area or in the most relevant area – and you can be quite creative to lower the cognitive load of using the model.
Laying out macro buttons logically and clearly takes some consideration.

In this debt dashboard we’ve made the macros clear but enabled the user to solve
everything with a ‘Master’ routine or stage by stage with the button’s numbered 1.2.3.
This approach is helpful during development but quickly trends to just running the
Master “solve everything all at once’ option.

LEAN + SEQUENTIAL

These are simply Excel Icons designed to communicate what macro to run. This is
from an advanced portfolio model where it needed to be very clear what to do. The
time to setup is say 10 minutes means the next weeks and months are easy.

MENU

Very occasionally it is useful for a
macro to run without explicit user
execution; such as when an option is
selected from a drop-down list.

ADVANCED NOTE

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

FOUND
ATION
In this section you will see our go-to approach
for laying out any routine - especially for
solving debt, running scenarios and interacting
with the spreadsheet for normal situations.
Outside of transaction modelling we tend to
use C# (C-Sharp)- when things get funky.

PSEUDO CODE
In Financial Modelling – The Guide for Essential Professional Skills we
advised to not start a Financial Model in Excel but by thinking about
the design and documenting, this can be a sketch or whatever. An
efficient professional outcome is very difficult to achieve if you don’t
follow this; the same is true for VBA code.
Solving a problem using VBA is broken into two parts:
1. Expressing the problem using business terms being sure to

capture all of the facets of the problem. We call this Pseudo Code
– for which you do not need to know the VBA language.

2. Conversion of the expressed problem into code
We always start with Pseudo Code – it sounds fancy but it’s just the
outline of what you want to achieve, what steps will be required -
without worrying about the code itself. Think of this exercise as you
are explaining your desired outcome to somebody else, who knows
syntax, who will do it for you.
In 1994 Nick used to have send code overnight to NASA Jet
Propulsion Labs to be run – when you have a 24 hour wait for the
results it forces you to think ahead!
Practically, just like in the spreadsheet, requirements change so your
mission is to think ahead and capture 90% of this before you start
coding. It sounds like it takes longer than ‘just getting started’ but our
clock is always ticking so we wouldn’t do it if wasn’t faster!

Clear existing table contents
Remember current Scenario Number
Change Scenario from 1 to [max]
Calculate?
Copy the KPI and paste into the corresponding Row
Restore Scenario number back to the original one
Calculate?
Put the cursor somewhere useful

Key considerations are:
 What parts of the spreadsheet will the code interact with – do they

exist yet or do you need to build them?
 What needs to change or be set up before performing any

calculations?
 How do you want the spreadsheet ‘left’ when the routine is finished?

You appreciate this part more with experience..
Here is some pseudo code to construct a simple scenario table – as you
become more experienced you find yourself writing this in more detail.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

https://www.vectorhq.co/learning

ANATOMY OF A ROUTINE
Ok – so as a starting point do this every single time. As you become
more advanced it changes a little, but this is the perfect recipe for
success for 75% of our VBA; the other 25% is a little outside of the
box. Our mindset is that somebody who “doesn’t understand VBA but
can read” should be able to work out what’s happening. Don’t skip on
any of the below – it’s quicker and solid.

Explain what the routine does

Declare variables

Initialise the environment

“The calculation”

Restore the environment

A VBA routine that doesn’t explain what it does at the outset and throughout is like a
cooking recipe that doesn’t show the ingredients, no steps or measurements and
then a photo of the result.

EXPLANATORY INFORMATION

The way you instruct VBA to do change things in the spreadsheet and how to operate
on those values requires “words to describe things” such as DebtLimit and DebtDelta.
We keep all of these in one place – you don’t have to, but it makes a huge difference.
Everything in modelling is generally better if it’s organised.

LETTING VBA KNOW THE WORDS YOU WILL USE

Establish the links to the spreadsheet.
We need to associate the variables being used in the routine to locations in the
spreadsheet. These locations all need to be Range Named, if not any movement in
the spreadsheet will not be tracked by the Routine.
For example, use “ScenarioNumber” not Scenario!D5.

WHAT CELLS IN THE SPREADSHEET ARE NEEDED

There will always be something to set
up before a routine runs – this could be
clearing a cell, turning off Screen
Updating, remembering values before
they change.

GET THINGS READY

The heavy lifting is made a lot easier because of the steps above meaning the ‘hard’
bit will be easier to read, update and debug. The contents of this part is entirely
dependent upon what you are trying to achieve.

THE ACTUAL CALCULATIONS

Resetting the model to the way you
want it. Good examples are not leaving
a live Scenario on Scenario 30 after it’s
finished or telling a user the routine has
finished.

LEAVING IT IN ORDER

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

ANATOMY OF A ROUTINE
Let’s see what this looks like put into practice. Don’t worry about what
this one does or the colours – just the structure. This is an often, over-looked aspect but should be at the top of each Module – it

forces your macro to only accept variables which have been explicitly declared. Useful
to avoid at you in the code - because the consequences are a headache!

OPTION EXPLICIT

It’s important and useful to explain what a macro does – not an essay just a few lines.
It’s one of those small things that increases User Experience (UX) and is also useful
when you open it up months or years later!

EXPLAIN WHAT IT DOES

Letting VBA know the Names of the Variables you want it to use and their type. There
are only a few Types you need to consider, 90% of the time they will be Range
(somewhere in the spreadsheet) or Integer.

DECLARE (DIMENSION) THE VARIABLES

Set allows VBA to know what locations in the spreadsheet are tied to the Variables
that are Ranges. A helpful tip is to keep them in the same order and grouped by their
relevance.

ESTABLISH THE LINKS TO THE SPREADSHEET

This is where you make sure the Spreadsheet is prepared for what you are about to
do and anything that needs a starting value, for example how many loops do you
want to run before it stops – a good failsafe.

INITIALISE THE ENVIRONMENT

This where the core instructions live.
You will note we’ve used line spaces
to make it easier to read which
becomes more important as routines
evolve.

CALCULATION

In this example we turn Screen Updating
back on (switched off in Initialise for a
faster compute time). It also restores the
Status Bar to say Ready rather than stay
on the last Solving Loop info.

RESTORE ENVIRONMENT

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

THE VBA ENVIRONMENT

Once a Module has been inserted and ideally
named clearly this is where you write your code. You
spend 99.99% of your time in this area.
To start creating a macro type
Sub and the name and VBA auto completes the line
adding brackets and the End Sub routine. Everything
between these two lines will be considered when
you run the macro.
Because you cannot use spaces or special characters
in the Routine Name we recommend _ or
CamelCase to make it easier to name – this is
important because if you want to run it from a
button / icon within the spreadsheet you need to
identify it – also if you call it from another Routine
then it is clear what is being called.
Keep the names clear – no prizes for abbreviation.

CODING PANEL

This is where you will see all the
worksheets and modules available
in the Workbook. As you create
modules they will appear here – we
group the contents of Modules to
be relevant. For example: Debt,
Scenarios, Reporting
The lower panel you don’t really
need to use much other than to
change the name of a Module to
be more relevant. There are some
sneaky options here for hiding a
worksheet, but we don’t advise it.

PROJECT PANEL

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

OPEN
THIS
FROM
EXCEL
USING
ALT+F11

When you create a Module, you
will be faced with a blank
window…it’s at this point you need
to know where to start! Don’t work
in a tiny window – maximise it.
Because you only need one
Module window open at the same
time.

INITIALLY

CALLING A SUBROUTINE
In Financial Modelling – The Guide for Essential Professional Skills
we introduced the concept of Don’t Repeat Yourself (DRY). The
principle is from code development. In essence only calculate
something once and then refer to it – in coding this means
breaking instructions down into their own “homes” and then call
them as needed rather than create one long script which may
have the same instructions as in another one – they should
instead all refer to the same Subroutine. In this example if a
change was made to SolveFacilityLimit it will flow through to all
routines that call it.
The more sophisticated a routine becomes the more subroutines
we create. A Master Solve routine may literally just be two lines
within a Loop structure:
 Call DebtSolve
 Call EquitySolve

If the Debt macro needs to run,
then rather than repeat the code
here we simply call the
SolveFacilityLimit Subroutine. Any
changes made to that would
automatically flow through too
other routines which reference it.

CALLING ANOTHER ROUTINE

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

https://www.vectorhq.co/learning

LOW COGNITIVE LOAD
One big slab of code is the equivalent poor practice to one long
formula in the spreadsheet.
Breaking blocks up, indenting the logical hierarchy, and adding
explanations is essential to making the code easier to read –
spending less time figuring out what is happening, where and when.
This approach is essential for all users, especially you as a developer
to aid debugging – which is a normal occurrence - and adapting as
the requirements change.
If you are working under transaction pressure these are the parts that
make it more reliable so you can be confident in the results. Think of
a routine like a formula in Excel, it’s better to break it up into bite-size
pieces than one monster!

“Tab” moves selected text ‘in’ by a
set amount – you can do on
groups of lines and if you get
yourself in a pickle then paste the
code into ChatGPT and ask it to re-
format, then paste it back in.

INTENDING

The more complex your routine
becomes the more useful it is to
separate code with an empty line.
VBA ignores them and it pays huge
dividends via code Clarity and
lowering the users Cognitive Load.
There is nothing worse than a ‘slab’
of code when you are under time
pressure.

LINE SPACING

Any text with a ‘ in front of it will be
ignored when the code is
compiled. This simple example
doesn’t warrant too much
commentary, but you will see in
other examples we lean on
commenting so that others know
what is intended but as importantly
we know what we are doing as we
work. The return on efficiency and
confidence is high!

COMMENTING

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

BASIC LOGICAL STRUCTURE
Before considering Loops in the next section, it is important to get to grips with the logical structures that will be
needed in the tests to determine if a Loop needs to run or stop. Consider these like use IF(), OR() and AND()
functions in the spreadsheet – they are your pantry staples. Rather than describe them, as they are self-evident,
here are some examples.

IF ABS(DebtDelta) > DebtTolerance THEN

 {Keep solving}

ELSE

 {Do something else or Stop}

END IF

EXAMPLE | IF

Using IF to determine whether to do something or not.

IF AND (ABS(DebtDelta) > DebtTolerance, DebtLoop < = DebtLoopMax) THEN

 {Keep solving}

ELSE

 {Do something else or Stop}

END IF

EXAMPLE | AND

Using AND to check whether to do something or not.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

If the result of a debt calculation is
above the nominated tolerance
level, then keep going. Risky as this
could just keep looping and you
would have to force a stoppage
which is not desirable.

IF

By introducing an AND into the IF
decision we can control the solving
loop not going beyond a fixed
number of loops. The value of
DebtLoopMax could be defined
within the debt dashboard or within
the VBA code.

This means if the debt doesn’t
solve within say 30 loops, the
routine will stop – keeping you in
control and not sitting wondering
what is happening.

AND

VARIABLE TYPES
Variables are the ‘words’ that describe concepts that VBA needs from you to ‘do-things’. Variable names are
by default declared within each routine. There is a concept called Global but let’s not worry about that for
now.
For example: You have a Scenario Number in a Scenario Manager, within the spreadsheet and you want it to
cycle through 10 scenarios then you need to tell it.
 ScenarioNumber (and where that lives in the spreadsheet) – this would be called a Range as it represents

something in the spreadsheet.
 ScenarioLoop which can go from 1 to 10 in increments of 1 – this would be called an Integer because it

doesn’t exist in the spreadsheet, so it’s not a Range, it’s only a construct within VBA and it only has whole
number values.

There are only a handful of variable types you need to lock down for most tasks:

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

VARIABLE TYPE USE CASE

Range Relates to a cell or array of cells within the spreadsheet.

Integer Usually used for loops and counters within VBA not the spreadsheet

String Mostly used for words / names. Lookup codes to find something within a string of values, FX codes, FY
years etc. The least commonly needed for normal transaction situations so don’t stress over this one.

Single For numerical values defined within VBA rather than the spreadsheet where precision is not critical

Double For numerical values defined within VBA rather than the spreadsheet where precision is critical

LOOPS
An essential tool in “doing something until
something is satisfied” – usually the heart of
all debt and scenario routines.
Loops come in different forms which we
explore in this section.

As the name suggests, Loops will carry out a series of actions until a test is met. There are different types of
Loops, your choice of which, and the way it knows when to stop are critical to fast solving.

LOOPS

TYPE BEHAVIOUR
For.. Next Predefined number of iterations (loops)

Do Until Checks at the end of each iteration (loop)

Do While Checks at the beginning of each iteration
(loop)

Which one of these to use is not always obvious.
It depends on the situation and how you define
the test.

DO UNTIL / WHILE

This is a Copy and Paste routine to solve a
physical feedback process, in a mine processing
operation. The calculated value is copied over the
pasted value until the difference between the two
lines (FeedDelta) = 0 or the number of Loops
executed hits a predetermined maximum. It also
sends a message to the Status Bar of where it is
up to ,so the user isn’t left wondering.

EXAMPLE

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

The more experienced you become the less you
find yourself using a For Next Loop because you
become increasingly more focused on defining
conditions that check if a Loop needs to run or
not. If you are just starting out and creating a
table that always has say 20 rows of scenarios
then it does the job.

NOTE

The For...Next loop in Visual Basic is one of the most commonly, used Loops for simple
applications – especially tables. It allows you to execute a block of code a specific number
of times, based on a counter variable that is incremented or decremented in each
iteration. Perfect for simple 1D and 2D tables where no ‘decision’ is needed for it to stop –
easier to read and understand when you are first starting out.

LOOPS | FOR NEXT

Instructions to execute

From
value

To
value Step size

Next

For
Step is an optional parameter, the
default value if not explicitly
entered is +1.
For advanced cases we can make
Step-Size a calculated value so that
solutions are found faster.

STEP

A good example of a For Next Loop is the creation of a table of
Scenario results where you want to run 15 Scenarios, without any
decisions, and paste the results into sequential rows.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

From and To do not need to be
static values like From 1 To 10. They
can take a feed from a range –
which is useful for situations like
calculating a Commodity price
LLCR breakeven which is not
algebraically possible.

THESE CAN BE SMART

To Step

Loops do not need to always go ‘forwards’ – in
some situations you may want to work from the
end and work backwards. LLCR break-evens are
good examples of this.

LOOP DIRECTION

Do Loops are the most common control structure to perform an
action according to a test. There are two types:
1. Do While
2. Do Until
Your choice of Do Loop is based on the logic you are wish to
execute.

LOOPS | DO UNTIL

Instructions to execute

Test

Loop

Do Until

Application of Do Until:
Copy and Paste a calculated value until the two lines give the same
result, the primary way to break and control circular references. The
test in this case would be that the absolute value of the difference
between the sum of each line is <>0 or within a specified tolerance.

The most common issue with
Loops not working correctly, or not
running at all are:

 Incorrect choice of While/Until
 The way the Test is constructed.

WARNING

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

When to use Do Until
A Do Until loop will run the contained logic even if the test is passed
but then stop. It checks at the end of each iteration (loop)

LOOPS | DO WHILE

Instructions to execute

Test

Loop

Do While

Application of Do While:
In solving a debt repayment profile that maybe because of an
activated sweep mechanism must not ever solve the next repayment
if the debt is repaid in the preceding period. Running it would cause
issues with payments beyond the debt being repaid.

The most common issue with
Loops not working correctly, or not
running at all are:

 Incorrect choice of While/Do
 The way the Test is constructed.
 Initial conditions meaning the

Loop doesn’t start.

WARNING

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

When to use Do While
A Do While loop will not run the contained logic if the test is passed.
It checks at the start of each iteration (loop). This is a subtle but
important difference especially when working with debt solving
routines.

DE
BUGGING
Excel spreadsheets and VBA do exactly what
you ask them to - so when they’re not
working - let us show you the core
techniques to find out why your routine isn’t
doing what you want it to.

DEBUGGING | Add Breakpoint
There are three essential tools to know and more often that not we write code that doesn’t need hardcore
debugging – but when you start out these are the tools you need to know.
 Add a Breakpoint – allows you to systematically pause and inspect.
 Add Watch – track the values of results as the routine runs.
 Step-Into / Over / Out – run ‘bit-by-bit’ in different ways so you can assess what is happening.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

Select the line you want the macro to stop at and
press F9. Remove it by pressing F9 again.
This allows you to run a macro only up to a select
position which is very helpful when you want to
understand what is happening rather than
running the whole thing and trying to work out
the problem. A good example is solving debt but
skip solving the DSRA for now.

ADD A BREAKPOINT

DEBUGGING | Add Watch
Adding a Watch allows you to keep an eye on the value of a variable throughout the
solve routine. There is a lesser used equivalent in the spreadsheet too which is useful but
buried. We often use it to track critical KPI all the time without needing to import the
value into the worksheet.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

Highlight the component you want to ‘watch’,
right click and select “Add Watch”. The Add
Watch box will pop-up where you can choose
how you want to watch it.
When you press OK the Add Watch Window will
pop up showing all Watches you have created –
these are ‘live’ so as the routine runs you can
track the results.

ADD A WATCH

DEBUGGING | Stepping
Stepping allows you to incrementally work through a routine without just letting it run all the way through. There are three
primary Step methods.
 Step-Into – Press F8 to run the macro line by line
 Step-Over – Press SHIFT + F8 to skip the next logical structure – useful for when you do not want a Subroutine to be

executed.
 Step-Out – a little more advanced, when you are within a logical structure, say a loop, you can use this to exit that specific

logic and go back to where you were. Kind of.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

When you are stepping the active line of code is
highlighted in yellow, so you know where you are
up to. Combine this with an Add-Watch to fully
appreciate the variables values.

STEPPING

There are a several useful commands accessible
from the Debug and Edit toolbars.

It is beyond the scope of this document to go
through each one but in training we introduce
these as needed. We find they are not heavily
used if you use the shortcuts already prescribed
but good to know they are there.

TOOLBARS

Step functions Add Watch

SAFETY MEASURES

When working in VBA there are a few things to be aware of which will affect the speed of your
work and manage user expectations. Keep in mind these Safety Measures protect you from
losing your work – don’t be the instigator of a Denial-Of-Service attack on your own work!
 Top tip! You can’t Undo a Macro once it’s run – Excel’s Undo-Stack is cleared. Therefore, save

the file before running. See our Modelling Guide on file saving to avoid any issues.
 Build in Fail Safes into all Loops – you do not want to be in the situation where you are

pressing Escape hoping the macro will stop when it’s clearly in a never-ending death spiral!
 If you are about to run a macro that has consequences, like clearing information and

rebuilding, or will take a long time to run – like building 20+ assets as individual sheets or a
long debt solve then it’s helpful to pop a message box up that explains what is about to
happen with an Ok or Cancel button – this is not a fancy thing that takes time – its’s a really
helpful step to avoid inadvertent execution.

 If you have turned Screen Updating off, you may need to force Excel to update messages in
the Status Bar / plot’s etc., this is achieved using the Do Events command. Keep this in mind if
you can’t see anything happening. Do Events is like a wake-up call for the spreadsheet part of
the file.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

https://www.vectorhq.co/learning

DESIGN
FOR SPEED
A macro can only be as good as the
underlying model it operates on -
conversely, a good model with a poorly
written macro yields the same inefficiency.
In this section, we introduce some key
concepts we always consider to ensure both
parts of the system operate as efficiently as
possible.

DESIGN FOR SPEED

For many routines speed will not be an issue – however in larger
models and especially debt solving and portfolio models it becomes
a ‘whole situation’ – especially under the time expectations of a
transaction.
We are always comfortable that our routines are running at an
optimum speed by following the guidelines below.
 Turn Screen Updating Off (once you know it’s working…)
 Establish the link to the spreadsheet once only using Variable

Names and the Set instruction. If you don’t do this and reference
the range each time it is used VBA is going back and forth more
times than it needs to.

 Do not execute more Loops than you need to – this can be
controlled with Tolerances. For example; no need take 30 seconds
to solve a $100m loan facility to $0.0001 when it solves to $1 in 2
seconds.

 Don’t Repeat Yourself (DRY) – only calculate something once and
then call it as needed. To be fair - this doesn’t change the speed
of a routine, but it has a huge impact on your efficiency and
effectiveness.

 Turn Calculation Mode to Manual and then only Calculate when
needed. It is good practice to then return calculation model to
automatic or even better inspect and remember the calculation
mode as part of initialising the environment.

 Open your Excel file as “One instance of Excel” – see our “Financial
Modelling – The Guide to Essential Professional Skills” to learn
more.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

TRACKING PEFORMANCE
For Debt Solving routines it is very helpful to know how long it
is taking so that if something changes and it takes longer you
don’t slowly get used to it taking longer and can find a way to
make it work faster.
This approach worked well for many years and is worth the
time to implement. It has been superseded now with a dynamic
macro consol (see Inspiration section) but if you want to keep
an eye on speed try this.
 Within your debt dashboard, or somewhere else easy to

find, create two, time formatted cells and name them
appropriately something like Time_Solve_PreviousRun and
Time_Solve_ThisRun.

 Within your macro create a time tracker that starts upon
execution and finishes when it is complete.

 Before running paste, the ThisRun into PreviousRun, this
means when it is finished you will have a comparison to this
time vs last time.

 Alternatively, as illustrated here you could show the
information in a pop-up box upon completion.

 Keep in mind that whilst a single calculation may appear
instant – when there is a Loop that needs to run 10x within a
loop that needs to run 10x within a loop that needs to run
10x you are now dealing with a scalar factor of 1,000.

A time tracker looks like this

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

We develop transaction ready models for a wide range of situations, with
deep experience in
 Renewables – especially multi-technology, multi-regional, portfolios.
 Mining – all Metals, Minerals and Processing.
 Manufacturing – Chemicals and Green Fuels.
 Infrastructure and Regulated Assets.
 Corporate Business Modelling.
We deliver in-house, in-person training for your teams, we specialise in
working with small groups and building capability over their careers. Our
approach has been developed over decades, is 100% hands-on and we
are told our passion shows. Our current courses are:
 Financial Modelling Fundamentals
 Project Finance Modelling
 Modelling Renewables Projects
 Modelling Three Way Financial Statements
 Advanced debt modelling using Visual Basic

If you’d like us on your side in a transaction or to build your teams
capabilities contact us at hello@vectorHQ.co

VECTOR
FOCUS

MODEL
DEVELOPMENT TRAINING

mailto:hello@vectorHQ.co?subject=Hello!
https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

INSPIR
ATION
Take a look at common applications where
we lean on VBA and know that even the
most complex debt-solving scenarios can be
achieved with a remarkably small toolkit. We
can teach your team this.

REGULAR APPLICATIONS
We use Macros for
 Solving the full range of Debt and Equity Structures
 Creating Scenarios, especially when Debt or a Physical process needs to

be solved for each run.
 Creating 1D and 2D Sensitivity tables – noting that if the output is Equity

returns debt may need to be solved for each element.
 Creating Reports (Exec Summary and 3-Way Financial Statements for all

Scenarios) and exporting to another Workbook.
 Importing and exporting data
 Spawning portfolio assets from a Master asset
 Consolidating Portfolio information into one worksheet, dynamically –

avoiding the nasty INDIRECT() function.
 Tracking changes in the worksheet
 Anything that needs to be automated, such as Data Grouping and

resetting the Freeze Pane position on each worksheet upon a Save and
Close event

 Calculating break even price profiles when an algebraic solution is not
viable.

 Creating and Clearing Range Names

Outside of these applications we use C-sharp for:
 Model auditing
 Formula manipulation and efficiency

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

INFORMING THE USER
There is nothing worse than not knowing if a macro should be run or
not but even more, when one is running what is it doing? Has it
crashed? Do I need to do anything?

For time expensive or extensive
routines, it is very helpful to make
sure the user wants to run the
routine. It is very easily when
working too fast to click the wrong
button or even do it by accident.
This also gives you the opportunity
to set expectations. Small things
like this contribute to higher UX for
minimal extra work.

LAUNCH INFORMATION

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

INFORMING THE USER
Whilst a routine is running it requires only a simple line to update the
status bar within Excel to inform the user of progress.

ƘºửửśửɔĂ0ĂĻvụЕśửɔĂÆì ǧ�Ă0ĂFvvỵĂ—Ă0ĂÆì ǧ�8Ă8 #―‽6‽‾―6#‽#Ă0ĂCƴºś�Ѝ8Ă8 \ - 6#‽‾6\ / #Ă0ĂÆì ǧ�ĂÆì ụ�ẻ8Ă/ 6#‽‽6—――Ă

ƘºửửśửɔĂ0ĂĻĝì ửẻỷśvĂ/ ĂvķĂ‾/ Ă0ĂĻvụЕśửɔĂÆì ǧ�

The status bar is a useful place to
update the user on progress – this
is also very useful to you as the
developer. Commands are readily
sent to it with simple syntax. This
does not add a speed overhead.

STATUS BAR

Ƙì ẻî Ѝ

Ƙì ẻî Ѝ

Remember to set it back to Ready
once completed with the
command:
Application.StatusBar = False

GOOD HOUSEKEEPING

Whatever text is contained within
quotes will be displayed as static
text. Information is joined using & -
called a string operator. Here
variables have been included which
you can see are the basis of the
status bar in the second image.

EASY AND FLEXIBLE SYNTAX

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

INFORMING THE USER

For debt-solving routines, it is very helpful to know how long they
take so that if something changes and they take longer, you can
respond accordingly.
As debt is solved, it is crucial to track what is happening. This can be
achieved by updating cells on a dashboard. Our approach provides
the user with a wide range of status updates—an invaluable tool for
developers looking to identify calculation inefficiencies.
These updates add no overhead to the solve speed, unlike updating
a cell in a worksheet. This console floats like a menu and is
particularly useful when structural changes may be causing solve
issues.
Once identified, these issues can be resolved or optimised by
managing tolerances or adjusting the order of solve loops.
Our primary goal is to gain an in-depth understanding of what is
happening under the hood, ensuring we achieve optimal
performance.

We use a Form to display the
information – this is not so readily
achieved with basic knowledge but
as you harness more advanced
concepts you can open up new
ways of enhancing the UX of a
model with very little extra work.

A POP OUT CONSOL

VECTOR – DEBT SOLVING CONSOL

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

BUILD A SCENARIO TABLE
This simple routine for creating a Scenario Table that also solves debt – it’s
not intended to be a tutorial but to highlight key components covered
earlier in the document.
 Embedding code
 Declaring variables with easy-to-read names
 The Structural Anatomy of a Routine
 Calling a Sub Routine
 Using commentary to show what key parts are doing

The “Calculation” part is made
easier to read and edit because of
the house-keeping steps taken
above.

THE ENGINE ROOM

BUILD TABLE

If Debt needs to be solved simply
provide the name and it will run
before this routine continues.

CALLING ANOTHER ROUTINE

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

DEBT DASHBOARD
This is the top part of a lite Debt Dashboard which combines the key numerical parts of the Term Sheet with key output to enable sense checking. We
lay components out in a sequential manner with a focus on items that give us confidence the solving routines are working. Do not confuse this with an
Executive Summary or an Input sheet it is a rare instance of inputs and outputs being on the same worksheet.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

In the grey boxes is a brief
description of the macros impact
and anything that is important to
know. It’s not extensive – nobody
would read it all.

EXPLAIN TO THE USER

In this instance we’ve collated the
principal repayments from a
monthly debt sheet into a Financial
Year summary – because that’s
what the deal team were focussing
on. Having it here means a user
doesn’t need to switch between
sheets to see what is happening.
It is also another place to build an
additional test to be incorporated
in the Master Test Panel in the
model.

SELECTED OUTPUT

Lite use of Conditional Formatting
enables the user to easily visually
spot when something has not
solved. Green = Ok, Red = Not Ok!
This is an example of lowering the
Cognitive Load through simple UX.
You can go town with these but
with experience you know what the
most useful checks are.

HIGHLIGHT THE DELTAS

We drive all covenant tests, forward
and backward looking from one
location so that as the Term Sheet
updates an unfamiliar user can
make the changes and know what
macro needs to re-run.

COVENANTS

In this case the blue cells are input
cells but in deals where we are
assessing different lenders terms
these are often located in a
Scenario Manager and linked in.

SOURCE OF INPUTS

PORTFOLIOS
There are several ways to build a portfolio model, over the past few years we have developed many portfolio models and optimised our approach to
minimise speed, maximise User Experience and Clarity. There are a lot of considerations to be navigated, and many are non-trivial, but the result
includes:
 One master asset (project / worksheet) to be spawned for up to ~250 individual assets (project / worksheet). 250 is extreme but many portfolios

commonly have 10+ assets.
 Solve debt at project level, a bundle of projects or at portfolio level.
 Only include live projects , either structurally (only exists when required) or dynamically (exists but is switched off).
 100+ flexible parameters to be aggregated, at asset level resolution.

vectorHQ.co powering decision confidence
INTRODUCTION | FOUNDATION | LOOPS | DEBUGGING | DESIGN FOR SPEED | INSPIRATION

Accommodates 1 asset or up to ~250 with existence and inclusion status managed by a dedicated management control panel.

Inputs can still be presented
traditionally, located in dedicated
Input sheets. These are regularly
expanded to for say DevEx and
CapEx schedules being on different
sheets.

INPUTS

It is very useful to be able to quickly
inspect any one of the individual
assets / projects – but showing too
many is overwhelming. VBA can be
used to show only live / active or
collapsing all of them until they
want to be investigated.
The options are endless to ensure
the model is easy to navigate,
increasing the User Experience.

ASSET / PROJECT SHEETS

VBA allows you to not only avoid working
across multiple sheets which is very risky, by
having one master worksheet and replicating
including range name management.
The click of a button builds out the entire
portfolio or only selected assets. An incredibly
powerful application of VBA – especially when
solving debt across multiple assets.

MASTER PROJECT

Our purpose is to develop elegant solutions for complex situations enabling
stakeholders to make confident investment decisions, build team capabilities
- as trusted advisors. We can be in for the deal but usually once the deal is
done our client’s ask us to work with them each subsequent time and train
their teams.
 Expertise – our two principals deliver decades of hands-on experience for

100% for your engagement.
 Responsiveness – here when you need us.
 Mission focused – your project is our project.
 Knowledge sharers – no restrictions, no licenses.

If you’d like us on your side in a transaction or to build your teams
capabilities contact us at hello@vectorHQ.co

VECTOR
WHEN IT
MATTERS

MODEL
DEVELOPMENT TRAINING

mailto:hello@vectorHQ.co?subject=Hello!
https://www.vectorhq.co/training
https://www.vectorhq.co/modelling
https://www.vectorhq.co/modelling
https://www.vectorhq.co/training
https://www.vectorhq.co/

